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Many motile bacteria display wiggling trajectories, which correspond to helical swimming
paths. Wiggling trajectories result from flagella pushing off-axis relative to the cell body
and making the cell wobble. The spatial extent of wiggling trajectories is controlled by
the swimming velocity and flagellar torque, which leads to rotation of the cell body.
We employ the method of regularized Stokeslets to investigate the wiggling trajectories
produced by flagellar bundles, which can form at many locations and orientations relative
to the cell body for peritrichously flagellated bacteria. Modeling the bundle as a rigid helix
with fixed position and orientation relative to the cell body, we show that the wiggling
trajectory depends on the position and orientation of the flagellar bundle relative to the
cell body. We observe and quantify the helical wiggling trajectories of Bacillus subtilis,
which show a wide range of trajectory pitches and radii, many with pitch larger than
4 µm. For this bacterium, we show that flagellar bundles with fixed orientation relative
to the cell body are unlikely to produce wiggling trajectories with pitch larger than 4
µm. An estimate based on torque-balance shows that this constraint on pitch is a result
of the large torque exerted by the flagellar bundle. On the other hand, multiple rigid
bundles with fixed orientation, similar to those recently observed experimentally, are
able to produce wiggling trajectories with large pitches.

1. Introduction

In most descriptions of bacterial swimming, such as analyses of run-and-tumble behav-
ior or of swimming near boundaries, the trajectories of the bacteria are considered to be
relatively straight, with radii of curvature much larger than the bacterial cell body, except
for occasional sharp changes in direction (tumbles). However, it has long been observed
that when examined in detail the cell bodies of bacteria “wobble” (Berg & Brown (1972);
Darnton et al. (2007)), an indication that they are constantly rotating. A consequence of
this rotation is that the natural trajectory of bacteria is generally a helix (Purcell (1977);
Shapere & Wilczek (1989); Keller & Rubinow (1976)). Its two-dimensional projection,
as typically visualized under a microscope, is a “wiggling” trajectory.

Either because this fine-scale wiggling is difficult to resolve spatially and temporally, or
because it is considered inconsequential for the net motion of the cell, wiggling has been
ignored in both measurements and modeling of bacterial motility. Instead, the wiggle
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is averaged out and the cell’s trajectory is considered to be the centerline of the actual
helical trajectory. We shall refer to this averaged trajectory as the centerline trajectory.

Many aspects of bacterial motility can be adequately explained and modeled based
purely on centerline trajectories. For example, during the run portions of run-and-tumble
swimming, Berg & Brown (1972) measured the statistics of reorientation during a tum-
ble of Escherichia coli by comparing the angle between the run portions of trajectories;
their definition of run direction corresponds to centerline trajectories, not to wiggling
trajectories. Accordingly, in models of run-and-tumble chemotaxis (e.g., Locsei & Pedley
(2009); Bearon & Pedley (2000), and references therein) the transport of bacteria due
to swimming corresponds to travel along centerlines. Since wiggling is deterministic, a
random reorientation of the cell body due to Brownian rotational diffusion or tumbling
results in a reorientation of equal magnitude of the centerline trajectory direction. How-
ever, there are cases when it is imperative to take into account the fine-scale wiggling.
One example of this, helical klinotaxis, has been extensively discussed in the context of
larger (≈ 10 µm) organisms like protists (Crenshaw (1996); Crenshaw et al. (2000)). He-
lical trajectories may enhance the sensing of physico-chemical stimuli, including chemical
gradients and light.

Wiggling naturally arises from any arrangement of the flagellum or flagellar bundle
that is not co-linear with a symmetry axis of the cell body, or if the cell body or bundle
is not symmetric. In general, wiggling can be influenced by time-varying orientations and
deformations of the flagella during propulsion, as well as the detailed geometries of the
bundle and the cell body. However, the most common models for bacterial propulsion
typically consider polar flagella or flagellar bundles modeled as helices aligned with the
axis of symmetry of a cell body, and hence cannot describe wiggling dynamics.

Here, we investigate the minimal model capable of producing wiggling dynamics,
namely, a flagellar bundle modeled as a rigid helix with a fixed, non-symmetric posi-
tion and orientation relative to a rotationally symmetric cell body. We investigate the
dependence of wiggling trajectory parameters on the cell geometry and show that the
actual trajectory depends on the position and orientation of the flagellum or flagellar
bundle relative to the cell body. We compare our modeling results to observations of wig-
gling trajectories of Bacillus subtilis. This approach can complement the use of flagellar
staining techniques to visualize flagellar bundles, especially since the latter often requires
high-sensitivity detection systems. In Section 2, we describe how a flagellar bundle push-
ing the cell off-axis leads to wiggling trajectories. In Section 3, we develop the model used
to calculate wiggling trajectories. Then in Section 4 we examine the wiggling trajectories
produced by a single flagellar bundle, and find that the pitch of the trajectory is limited
to values below those often observed for B. subtilis. Finally, in Section 5, we discuss how
multiple flagellar bundles can produce wiggling trajectories with larger pitches.

2. The kinematics of wiggling

A helical trajectory is the general result of a swimmer undergoing a periodic swimming
stroke in a body-fixed reference frame (Purcell (1977); Shapere & Wilczek (1989); Keller
& Rubinow (1976)). Over one stroke the swimmer will both rotate and translate, arriving
at a new position and orientation at the end of the stroke. During the next stroke,
the swimmer rotates and translates by the same amounts relative to the body fixed
axes, which are now rotated with respect to the original frame. The net result of many
swimming strokes is a helical trajectory.

It is simplest to understand the kinematics of such a trajectory by considering bacteria
that swim using a single polar flagellum (monotrichous bacteria) or a single bundle of
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Figure 1. a) A bacterium swimming with constant linear velocity V and angular velocity
Ω in the body-fixed frame. Although in the body-fixed frame V and Ω are constant, in the
space-fixed frame only Ω is constant and V rotates about Ω, leading to a helical trajectory
around the direction of the rotation axis. The dashed line is the actual trajectory, while the
dotted line is the centerline trajectory that one obtains if the wiggling is averaged out. b)
Frames from a video of an E. coli bacterium show that the cell body wobbles during swimming.
Labels correspond to frame numbers, with frames spaced by 2 ms. Reproduced from Darnton
et al. (2007), with permission from the American Society for Microbiology. c) Trajectories of
B. subtilis show different degrees of wiggling. Trajectories were obtained from frames acquired
at 8.2 ms intervals with a 1600x1200 pixel CCD camera mounted on an inverted microscope
equipped with a 40x objective. This smooth-swimming strain, B. subtilis OI4139 (Szurmant
et al. (2004)), was grown in Cap assay minimal medium (Zimmer et al. (2002)) and swam at a
mean speed of 50 µm/s. The trajectories labeled 1, 2, and 3 have pitch and radius of: 1) 7.3 µm
and 1.1 µm, 2) 3.0 µm and 0.6 µm, and 3) 10.3 µm and 0.4 µm.

flagella (peritrichous bacteria) with a fixed orientation relative to the cell body. In the
body-fixed frame, one may describe the motion induced by the rotation of the flagellum or
flagellar bundle as a constant counter-rotation of the cell body combined with a constant
translation of the entire cell (Fig. 1a). To analyze the resulting helical trajectory, the
axis of rotation in a space-fixed frame remains constant so that the rotation axis Ω (Fig.
1a) must coincide with the axis of the helical trajectory. The distance traveled in the
direction of the axis of rotation during one flagellar revolution thus determines the pitch,

P = TV‖, (2.1)

where T is the period of one flagellar revolution, V‖ = V · Ω/|Ω| is the component
of the swimming velocity along the rotation axis, and V and Ω are the instantaneous
translational and the angular velocities of the cell body, respectively. The radius of the
helical trajectory, R, is then obtained by noting that during one period, T , the velocity
perpendicular to the rotation axis takes the swimmer around a circle of circumference
2πR. Thus,

R = TV⊥/(2π), (2.2)

where V⊥ = |V · (I − ΩΩ/|Ω|2)| is the velocity component perpendicular to the rota-
tion axis. Hence, specifying the wiggling trajectory’s pitch, radius, and instantaneous
swimming speed is equivalent to specifying the instantaneous translational and angular
velocities of the cell body. We note that when V and Ω become parallel, the radius
becomes zero and the trajectory is straight. For these straight trajectories, the pitch in
a geometric sense is ill-defined, because the trajectory repeats after any length traveled,
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Figure 2. Probability distribution functions of a) pitch and b) radius of observed wiggling
trajectories of B. subtilis OI4139. The mean pitch and radius were 8.9 ± 6.0 µm and 0.91 ±
0.81 µm, respectively. (6.9 µm and 0.62 µm median pitch and radius, respectively.) Images were
analyzed using BacTrack, an in-house cell-tracking Java software. BacTrack locates bacteria
in each image and tracks them among two consecutive images, by applying a search radius
(the maximum distance a bacterium can move between successive images). We applied a linear
least squares fit to each trajectory to obtain the centerline trajectory. The trajectory radius
was determined from the root-mean-square of the perpendicular distance from each data point
to the centerline. The trajectory pitch was determined as twice the average distance between
consecutive crossings of the centerline. Trajectories with pitch greater than 30 µm or radius
greater than 5 µm were discarded because upon visual inspection they did not correspond to
wiggling trajectories. Pitches and radii from 72,087 trajectories are included in the data shown.

but the pitch as defined by Eq. 2.1 remains well-defined and is the limit of the pitch
obtained as V and Ω continuously approach coincident directions.

The precise wiggling kinematics varies among different species of bacteria and even
among individuals within a species. For example, Darnton et al. reported that E. coli

swim with the long axis of their cell bodies making an average angle of 23 degrees with the
centerline trajectory (Fig. 1b). They observed the cell body rotating around the average
trajectory direction, but the radius of the helical trajectory was too small to be directly
observed. Different wiggling kinematics are observed for B. subtilis. We have imaged the
trajectories of a smooth-swimming (i.e., non-tumbling) strain of B. subtilis and processed
the images to track the position of the center of cell bodies. Representative recordings
(Fig. 1c) reveal that B. subtilis exhibits wiggling trajectories. Fig. 2 shows the probability
distribution functions of pitch and radius for observed wiggling trajectories. The average
pitch and radius were 8.9 µm and 0.91 µm, respectively, although it should be kept in
mind that the pixel dimension was 0.38 µm. Additionally, substantial variability among
trajectories is evident; the standard deviations for the pitch and radius were 6.0 µm and
0.81 µm, respectively. In Fig. 1c we have labeled three trajectories, with radii varying
from 0.4 µm to 1.1 µm and pitches varying from 3.0 µm to 10.3 µm, and listed their
pitches and radii in the caption.

Since the flagellar bundle in peritrichously flagellated species like E. coli and B. subtilis

can form at many positions and can be oriented in many possible directions, we focus on
how altering flagellar bundle configuration affects wiggling bacterial trajectories.

3. Off-axis flagellar configurations produce wiggling

First consider a flagellar bundle located at the pole of a symmetric cell body and
oriented co-linearly with the major axis of the cell body. Due to the symmetry there will
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be nearly no wiggling. In principle, the symmetry is broken by the phase angle of the
rotating bundle, which leads to slight helical deviations from a straight path (Keller &
Rubinow (1976)); however, the flagellar rotation is much faster than the counter-rotation
of the cell body, so that this symmetry-breaking is averaged out over time scales much
shorter than those relevant for the cell body dynamics we describe here. Therefore, over
time scales longer than a flagellar rotation period, the cell body merely counter-rotates
against the flagellar rotation. In other words, the angular and translational velocities of
the cell body are parallel, leading to nearly straight trajectories.

The wiggling we are concerned with therefore occurs when a flagellar bundle is attached
to the cell body in an off-axis configuration. In this case, the flagellar thrust produces
a torque on the cell body that leads to cell body rotation beyond the usual counter-
rotation produced at the rotary flagellar motor. The net result is that the overall angular
velocity of the cell body is no longer parallel to the translational velocity of the cell body,
generating a wiggling helical trajectory.

3.1. Boundary Element Method

To investigate the dependence of the shape of the helical trajectory on the flagellar
configuration, we calculate trajectories for a range of configurations using the method of
regularized Stokeslets (Cortez (2001); Cortez et al. (2005)), a type of boundary element
method (BEM). Boundary element methods (Phan-Thien et al. (1987); Ramia et al.

(1993); Goto et al. (1910); Flores et al. (2005); Shum et al. (2010); Smith et al. (2009))
have been used extensively to model swimming bacteria. In the method of regularized
Stokeslets, the flow is modeled as due to localized forces at the surface of the cell body
and flagellum. In contrast to the Stokeslet, which is the flow field caused by a point force
acting on the fluid, the regularized Stokeslet is the flow field established by a smooth,
localized distribution of force (Cortez (2001)). The total velocity field is

vi(r) =

N∑

α

Sij(r − rα)fα
j (3.1)

where rα is the location of the localized force fα, and Sij(r) = ((r2+2ǫ2)δij+r̂ir̂j)/(8πµ(r2+
ǫ2)3/2) is the regularized Stokeslet. The parameter ǫ represents the width of the force
distribution of an individual regularized Stokeslet, which takes the form 15fαǫ4/(8π(r2 +
ǫ2)7/2) for a net force fα centered at the origin.

To specify the flow we must determine the forces fα, which in turn are determined
if we know the velocity field at N points, since Eq. 3.1 is an invertible linear system
of equations. Eq. 3.1 is evaluated to provide the velocity at each of the N positions rα

on the surface of the swimmer. The regularization of the Stokeslet prevents singularities
of the flow field at the positions rα. The velocities at the surface points can in turn
be determined from no-slip boundary conditions and the swimming velocity, cell-body
angular velocity, and the prescribed swimming stroke:

v(rα) = V + Ω× r′α + δṙα (3.2)

where r′α are the positions measured from the centroid of the cell body. The swimming
stroke is specified by δṙα, which is the velocity of surface elements relative to the centroid
of the cell body in a body-fixed frame; in our case they specify that the flagella rotate
relative to the cell body at a fixed angular frequency. This reduces the problem to six
unknown degrees of freedom, the components of V and Ω, which are solved for by
applying the conditions of zero total force and zero total torque appropriate for a freely
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suspended swimmer,

0 =
∑

α

fα, (3.3)

0 =
∑

α

r′α × fα. (3.4)

From the resulting linear system of equations we determine the instantaneous swimming
velocity and the angular rotation of the cell body as a function of the geometry of the
swimmer and the swimming stroke, which is specified by the rotation rate of the flagellar
bundle relative to the cell body.

3.2. Bacterial geometry and discretization

The cell body is modeled as an ellipsoid. The surface of the ellipsoid is discretized using
a mesh generation scheme for implicit geometries due to Persson (2005). At each node
of the discretization we place one regularized Stokeslet. The average separation between
neighboring Stokeslets on the surface of the cell body is denoted by ∆sc.

In peritrichous bacteria a flagellar bundle is composed of multiple flagella which come
together to rotate synchronously. The hook at the base of a flagellum provides the com-
pliance necessary to allow the formation of a bundle from multiple flagella attached at
different locations. Due to this compliance the bundle may be able to vary its position
and orientation relative to the cell body during propulsion. The bundle is a composite
of many flagellar helices so its shape may not be precisely helical, especially at the base
where flagella from different locations enter the bundle. Nonetheless, since studies of
bundle dynamics (Flores et al. (2005); Janssen & Graham (2011)) and geometries do not
currently provide detailed guidance for bundle geometry and dynamics, we use a minimal
model capable of producing wiggling trajectories which treats the flagellar bundle as a
rigid helix with a fixed position and orientation (apart from rotation about the helical
axis) relative to the cell body. Away from the hook, flagella are stiffer and modeling
them as rigid helices can be justified by the experiments by Magariyama et al. (2005).
These experiments verified the calculation of Takano et al. (2003), who found that for
an individual flagellum, flows generated by swimming deform the flagellum by less than
3%.

To prevent the close approach of the flagella and cell body, especially when the bundle
is off-axis, we taper the bundle’s helical radius near the cell body; when the bundle lies
along the x-axis, the centerline of the bundle filament is given by

r(s) = −sx̂ + [1 − e−s2/k2

E ]r [cos(2πs/p) ŷ + sin(2πs/p) ẑ] , (3.5)

where p and r are the pitch and radius of the flagellar bundle; s is the distance along
the axis of the helix, ranging from 0 to the length of the helix L; and kE is the charac-
teristic length of the tapering region. This flagellum geometry has previously been used
extensively in the literature (Phan-Thien et al. (1987); Ramia et al. (1993); Shum et al.

(2010)).
The surface of the flagellar bundle is discretized as follows. The bundle is cut into cross

sections that are normal to the centerline of the helix. Regularized Stokeslets are placed
at n equally spaced points around this cross section, i.e., at the vertices of a regular
n-gon. At the next cross section, another n-gon is constructed, but rotated so that each
regularized Stokeslet has two nearest neighbors in the n-gon of the previous cross section.
An integer number of evenly-spaced cross sections are chosen such that the spacing of
nearest-neighbor Stokeslets between adjacent cross sections is as close as possible to the
distance between the vertices of the n-gon. We denote the mean spacing between nearest
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Figure 3. Validation of BEM by calculation of the resistance coefficients for an ellipsoid: a)
CT1, b) CR1, c) CT2, and d) CR2, all normalized by their analytic values CA

T1, CA
R1, CA

T2, and
CA

R2, respectively, as a function of number of Stokeslets used to discretize the ellipsoid surface.

neighbor Stokeslets on the tail with ∆sf . The first and last cross sections lie at the
faces of the flagellar filament, specified by s = 0 and s = L. Finally, hemispherical caps
are placed at the ends of the flagellar filament. The caps are discretized using the grid
method described in Cortez et al. (2005); the spacing between elements on the equator
is chosen to be as close as possible to ∆sf .

3.3. Validation of BEM

3.3.1. Ellipsoids

We first validate the BEM by calculating the translational and rotational resistance
coefficients of an ellipsoid, and comparing them to analytical results (Steinberger et al.

(1994)). To calculate the translational (rotational) velocity due to an external force
(torque), the equation for force (torque) balance, Eq. 3.3 (3.4) is modified to include
a net external force (torque) on the left-hand-side.

Analytic results (Happel & Brenner (1965)) indicate that for a prolate ellipsoid moving
through a fluid in the Stokes limit, the total force F and total torque N are linearly
related to the translational and rotational velocities V and Ω, respectively, and given by
F = CT1V and N = CR1Ω, for V and Ω parallel to the major axis; and F = CT2V and
N = CR2Ω, for V and Ω in the plane of the minor axes. For the cell body ellipsoid with
major semiaxis 4b and minor semiaxis b moving through a fluid with dynamic viscosity µ,
the analytic results give CA

T1
= 30.1µb, CA

T2
= 38.3µb, CA

R1
= 72.5µb3, and CA

R2
= 341µb3

(Steinberger et al. (1994)). In Fig. 3 we plot the values of the four resistance coefficients
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Figure 4. Validation of the BEM by comparison to the BEM results of Phan-Thien et al.
(1987) and the Slender Body Theory of Higdon (1979). a) Component of swimming velocity in
the rotation direction (V‖) normalized by helical wavespeed (c) as a function of the number of
turns Nλ, as in Figure 2 of Phan-Thien et al. (1987); b) V‖/c as a function of the ratio of the
flagellum filament radius to cell body radius (rf/a), as in Figure 5 of Phan-Thien et al. (1987).

normalized by the analytic results as a function of the number of regularized Stokeslets.
Different curves correspond to different values of Stokeslet regularization parameter to
Stokeslet spacing (ǫ/∆s). The numerical values converge on the analytic results. For the
ellipsoid, the fastest convergence is obtained for ǫ/∆s = 1/3, for which the average error
is 0.99% using 1712 Stokeslets (which is the number we use to discretize the bacterial
cell body). For ǫ/∆s = 1, the average error is 5.2% using 1712 Stokeslets.

3.3.2. Bacterial geometries

We validate our calculations of bacterial swimming velocities by comparing results to
the BEM calculations reported by Phan-Thien et al. (1987). Those authors used the same
form of flagellar centerline as in Eq. 3.5 and reported swimming speeds for spherical cell
bodies and a variety of flagellar geometries, calculated using a BEM. They compared their
results to those calculated using the Slender Body Theory of Higdon (1979). We calculate
the swimming speed for the same flagellar geometries but our own discretization scheme,
with cross sections represented by 18-gons, and 1608 regularized Stokeslets discretizing
the cell body. These choices lead to a Stokeslet separation on the cell body (∆sc) that is
approximately 23.5 times as large as the Stokeslet separation on the bundle (∆sf ). The
regularization parameter ǫ is chosen to be equal to ∆sc on the cell body and ∆sf on the
flagellar bundle (as justified in Section 3.4) .

Representative results are shown in Fig. 4. In Fig. 4 the cell body has radius a, the
contour length of the flagellar filament is 5a, and the radius of the filament centerline is
r = 2π/p, where p is the pitch. In Fig. 4a the swimming speed is plotted as a function of
the number of turns of the helical flagellar filament, Nλ, and the radius of the flagellar
filament, rf , is held constant at rf = 0.02a. The pitch, p, of the filament centerline varies
inversely with the number of turns Nλ. In Fig. 4b, the swimming speed is plotted as a
function of the radius of the flagellar filament rf , and the number of turns is held constant
at Nλ = 1, hence the pitch is also constant. Fig. 4 shows that there is good agreement
between our BEM, Phan-Thien et al. (1987), and Slender Body Theory. Across Fig. 4,
the average discrepancy is 2.6% relative to the results of Phan-Thien et al. and 3.2%
relative to the Slender Body Theory. In Fig. 4a the maximum discrepancy is 13.5% for
half a turn (Nλ = 0.5), but for three turns (the number of turns in our B. subtilis model)
the discrepancy is 1.9% relative to Phan-Tien et al. and 2.3% relative to Slender Body
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Theory. In Fig. 4b, the maximum discrepancy is 1.8% relative to Phan-Thien et al. and
4.1% relative to Slender Body Theory.

3.4. Geometry for B. subtilis

We model the bacterial cell body as an ellipsoid with major and minor axes of 4 µm and
1 µm, respectively, corresponding to the typical size of the cell body of B. subtilis in our
experiments. In reality B. subtilis often have pill-shaped cell bodies which may not be
completely symmetric; we discuss the possible effects of more realistic body shapes in
Section 6.

The flagellar bundle is modeled as a three-turn helix with a pitch angle of 37 degrees
and a length along the helical axis of 6 µm, according to values measured in literature
(Fujii et al. (2008)). The bundle contains approximately 7–8 individual flagella, each of
diameter approximately 12–20 nm (Li (2010)). The packing fraction within the bundle
is not known, so we pick a bundle filament radius of 45 nm. (For a close-packed bundle
of 20 nm thick flagella, the bundle filament radius would be 30 nm; we discuss the effect
of varying the bundle filament radius in Section 6.) We prescribe the rotation rate of the
flagellar bundle about its helical axis to be 150 rotations per second relative to the cell
body, which yields a swimming velocity of 17.9 µm/s in the polar, on-axis configuration.
These are physically reasonable values based upon our observed speeds of B. subtilis; more
importantly, our results for trajectory shapes are not sensitive to the precise rotation rate
(or swimming speed, which varies proportionally to rotation rate) since the shape of the
helical trajectory only depends on the ratio of the swimming velocity and the flagellar
rotation rate.

In contrast to the geometry used in Phan-Thien et al. (1987), the flagellum is not
directly attached to the body. Instead, as in Ramia et al. (1993) and Shum et al. (2010),
the flagellum base is separated from the cell body by a gap to prevent the close approach
of moving surfaces. Accurate treatment of two nearby moving surfaces requires that the
separation between the surfaces be larger than the spacing between regularized Stokeslets,
∆s (Ramia et al. (1993)). Since (as detailed later in this section) the Stokeslet spacing
in the cell body is ∆sc = 0.07, we choose a gap of 0.3625 µm, approximately 5 times as
large as the Stokeslet spacing.

The flagellar configuration can be specified using three angles (Fig. 5): one for the
attachment point and two for the orientation of the flagellum. Relative to a body-fixed
coordinate system {ê1, ê2, ê3}, where ê1 is aligned with the major axis of the cell body,
the angle α from the −x-axis specifies the attachment point, while the angles β and γ
specify the orientation of the flagellum. Note that values of β which correspond to mirror-
image bundle configurations (e.g., β = 37◦ and β = 360◦ − 37◦ = 323◦) are distinct and
do not yield the same wiggling trajectories, because the chirality of the helical flagellum
breaks the mirror symmetry.

In Fig. 6 we plot the calculated translational and angular velocities V and Ω of the
cell body as a function of the number of Stokeslets per flagellum cross section (n) for
a representative flagellar configuration geometry, demonstrating the convergence of our
results as the discretization becomes finer. Different curves correspond to different values
of the ratio of Stokeslet regularization parameter ǫ to Stokeslet separation ∆sc,f . In
contrast to the ellipsoidal geometry, for the bacterial geometry ǫ/∆s = 1 led to the fastest
convergence; hence we only calculated the computationally intensive case of n = 24 for
ǫ/∆s = 1, and use this value for the remainder of our calculations.

For ǫ/∆s = 1, the values of |V| = 16.29 µ/s and |Ω| = 34.68 rad/s for n = 12 are within
3.5% of the results for n = 24 (|V| = 16.88 µ/s and |Ω| = 35.74 rad/s); while the values
of P = 2.88 µm and R = 0.102 µm are within 0.6% of the results for n = 24 (P = 2.90 µm
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Figure 5. Schematic illustrating the definitions of the angle a) α of the attachment point
between the flagellar bundle and the ellipsoidal body, and the angles b) β and c) γ specifying
the orientation of the flagellar bundle.

Figure 6. The kinematic parameters a) swimming speed (|V|), b) cell-body rotation rate (|Ω|),
c) helical trajectory pitch (P), and d) radius (R), as a function of n, the number of Stokeslets
used to discretize a cross-section of the flagellar bundle. Different curves correspond to different
values of the ratio of Stokeslet regularization parameter ǫ and Stokeslet separation ∆s. Results
are for the flagellar configuration specified by α = 74◦, β = 323◦, γ = 61◦.

and R = 0.102 µm). Therefore, in order to reduce computational time, the calculations
in Section 4 use n = 12, for which ∆sf = 0.00785 and the total number of regularized
Stokeslet in the discretization of the flagellar bundle is 4204. The discretization of the
cell body uses 1712 regularized Stokeslets, leading to ∆sc = 0.07. In Fig. 7, we show the
resulting discretization for one flagellar configuration.

In order to compute the helical wiggling trajectory, it is important to realize that even
in the body frame, the translational and rotational velocities are not constant, because
the geometry of the bacterium changes due to the rotation of the flagellar bundle. We
calculate the instantaneous translational and angular velocities of the cell body at time
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Figure 7. The model bacterium has a 1 × 4µm ellipsoidal body. Each point on the surface of
the bacterium corresponds to the location of a regularized Stokeslet. There are 1712 Stokeslets
on the cell body and 4204 Stokeslets on the flagellar bundle. Shown here is the configuration
with flagellar angles α = 74o, β = 323o, and γ = 62o.

intervals corresponding to 1/32nd of a flagellar rotation period. We then integrate the
velocities to find the net displacement and rotation of the cell body after a complete flag-
ellar rotation. The average translational and angular velocities are calculated by dividing
the net displacement and rotation by the flagellar rotation period. The pitch and radius
of the helical trajectory are calculated using these average velocities in Eqs. 2.1 and 2.2.

While one should in principle construct the helical trajectory by discrete iterations
of the translation and rotation produced by one flagellar rotation, the error induced by
instead using average velocities (Eqs. 2.1 and 2.2) is minimal, because there are > 10
flagellar rotations for each period of the helical trajectory. For the flagellar configuration
in Fig. 6, we verified that the translational and rotational velocities are only slightly
changed by decreasing the time step from 1/32nd to 1/64th of the flagellar rotation
period; decreasing the time step in this fashion changed the pitch and radius of the
trajectory by 0.0038% and 0.077%, respectively.

Note that different results are obtained by calculating the average translational and
angular velocities by a simple average of the body-frame velocities over the 32 flagellar
positions. This simple average leads to large errors in the radius and pitch, because
the body frame constantly changes during one rotation of the bundle due to flagellar
propulsion. This type of error is less important for on-axis geometries without wiggling
(Ramia et al. (1993); Shum et al. (2010)).

4. Wiggling trajectories of B. subtilis with one flagellar bundle

We calculated the trajectories produced by the entire range of flagellar bundle configu-
ration geometries by varying the angles α, β, and γ. Each panel in Fig. 8 shows the pitch
(P ) or radius (R) as a function of flagellar orientation angles β and γ for fixed value of
α. The range from α = 0◦ (polar bundle) to α = 90◦ encompasses all possible flagellar
configuration geometries. We varied the angles α, β, and γ in 15◦ increments, but Fig. 8
only shows the results for selected α. We excluded unphysical parameters for which the
flagellum and cell body overlap.

The pitch and radius both vary from roughly 0 µm to 4 µm. There is the least variation
in pitch as a function of configuration angle when γ ≈ 90◦ or β ≈ ±90◦, otherwise there
can be quite strong variations in pitch as the angles β and γ vary. A notable feature
of these results is that through the entire range of flagellar configurations, the pitch
is never greater than 4 µm (precisely, 3.875 µm). Since 81.5% of the observed wiggling
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Figure 8. The pitch P and radius R of trajectories of B. subtilis calculated using our BEM.
By varying the flagellar configuration angles (see Fig. 5) we explore the entire parameter space
of possible flagellar configurations. In each panel the angle specifying the attachment point (α)
takes a fixed value, while the angles specifying the orientation of the bundle (β and γ) vary.
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Figure 9. Scatter plots of pitch P and radius R of trajectories calculated using our BEM
for B. subtilis with a single flagellar bundle (symbols, color), and of trajectories observed in
our experiments (points, black; obtained as in Fig. 2). Panel b) shows a magnified view of the
small-pitch region of panel a).

trajectories of B. subtilis in Fig. 2 have pitches greater than 3.875 µm, this result provides
strong evidence that a single flagellar bundle cannot explain all of the observed swimming
kinematics of B. subtilis.

In Fig. 9 we compare the pitch and radius obtained for each of our calculated tra-
jectories to those of our experimentally observed trajectories; the calculated trajectories
occupy a markedly smaller space in pitch-radius space than the observed trajectories.
While the range of radius in our calculated trajectories is comparable to the range in
our calculated trajectories, it is clear that many of the observed trajectories have pitch
larger than those generated by our model.

4.1. Physical constraint on maximum pitch from a single flagellar bundle

To understand why a single flagellar bundle cannot produce wiggling trajectories with
large pitch, we return to the kinematics described in Section 2. The pitch is the dis-
tance traveled in the direction of Ω by the cell body during one period of body rotation
(T = 2π/|Ω|). Thus, an upper bound on the pitch can be obtained as 2πVmax/Ωmin,
where Vmax is the maximum swimming speed and Ωmin is the minimum rotation rate.
Amongst the trajectories for flagellar bundle configurations calculated in Section 4,
Vmax ≈ 22 µms−1 and Ωmin ≈ 25 s−1, leading to an estimated maximum pitch of ap-
proximately 5.5 µm.

A physical constraint on the maximum pitch is set by the smallest cell-body rotation
rate Ωmin. In turn, the minimum counterrotation rate is determined from the torque
produced by rotation of the flagellar bundle (from our BEM calculations, 1.54 pN µm for
a bundle rotating at 150 Hz) and the maximum rotational resistance coefficient of the
cell body, CRmax. CRmax can be estimated as the resistance coefficient for the cell body
rotating about an axis parallel to a minor axis and intersecting the polar end of the cell
body, CR2+CT2(4b)2 = 0.12 pNµms. Together, the torque and resistance coefficient lead
to an upper bound for the pitch generated by a single flagellum of 10.7 µm. This upper
bound is somewhat larger than the maximum pitch of 4 µm calculated with the BEM, but
our estimate is rather conservative; in particular Vmax leads to a significant overestimate
because the relevant velocity is the component of velocity in the direction of Ω, not the
entire swimming speed. Furthermore, when the flagellum is in the configuration producing
CRmax the swimming speed is slower due to additional drag from the cell body.

Nonetheless, this analysis sheds light on the physical reason why a single flagellar
bundle cannot produce a large pitch: the flagellar torque required for propulsion is too
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Figure 10. a) Bacterium with one flagellar bundle at α1 = 45◦, γ1 = 0◦, and β1 = β, and the
other bundle at α2 = 45◦, γ2 = 0◦, and β2 = −β. The flagellar thrust force from the first bundle
(Ft) produces a torque (Nt) that tends to cancel the torque due to rotation of the second bundle
(Nf ), and vice versa. The reduced total torque can lead to a considerably larger wiggling pitch,
compared to the case of a single flagellum. b) The pitch P as a function of β for the geometries
in (a).

large, and induces counter-rotation rates of the cell body that are too fast to allow
the bacterium to travel very far during one rotation of the cell body. Thus, generically,
wiggling trajectories of bacteria result from a flagellum or flagellar bundle pushing the
cell body off-axis, while the period of the wiggle (hence, wiggle dimension) is limited by
the swimming speed and flagellar torque.

This analysis assumes that bundles are rigid helices and the cell body is an ellipsoid, and
ignores hydrodynamic interactions between the bundle and cell body in estimating the
torque and rotational resistance. The estimated upper bound is obtained using maximal
rotational resistance and swimming velocity; therefore we expect the bound to be valid
not only for our model’s time-independent bundle configuration, but also for time varying
configurations of a rigid helical bundle.

The maximum estimated pitch is smaller than many of the wiggling trajectories we
observe for B. subtilis, indicating that factors not included in our model must be impor-
tant for wiggling dynamics. These factors include static and time-dependent variations
from a helical bundle geometry, non-ellipsoidal and asymmetric cell body geometries, and
time-varying bundle configurations which lead to large hydrodynamic interactions with
the cell body. In what follows we investigate yet another possibility which can produce
larger pitches even for rigid, helical flagella with fixed orientation and position: whereas
one bundle generates too much torque, a suitable arrangement of two flagellar bundles
may be able to reduce the total torque exerted by the flagella. This scenario is inspired
by recent experimental observations, based on flagellar staining, which revealed that B.

subtilis can swim using two flagellar bundles (Li (2010)). Although two flagellar bundles
will have twice the torque due to rotation about their axes, the flagellar thrust is exerted
along different lines of action, reducing the net torque, as illustrated in Fig. 10a. Thus,
multiple flagellar bundles can allow B. subtilis to generate the experimentally observed
wiggling trajectories with pitch greater than 4 µm.

5. Wiggling trajectories produced by two flagellar bundles.

With two flagellar bundles, the number of possible flagellar configurations rises dra-
matically, so we are not able to perform an exhaustive parametric study of configuration
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Trajectory α1, α2 β1, β2 γ1, γ2 Calculated pitch, µm Calculated radius, µm

1 35◦, −35◦ 23◦, −22.5◦ 21◦, 0◦ 7.9 1.6
2 18◦, 0◦ 20◦, −0◦ 0◦, 0◦ 3.0 0.6
3 55◦, −55◦ 47◦, −47◦ 5.1◦, 0◦ 10.3 0.4

Table 1. Examples of calculated wiggling trajectories produced by two flagellar bundles with
pitch and radius similar to numbered trajectories in Fig. 1. The angles α1, β1, γ1 are for the
first bundle, while α2, β2, γ2 are for the second bundle.

geometries. Furthermore, literature results on the precise arrangement of the two bun-
dles are insufficient to provide guidance in this respect. However, by choosing a class
of configurations we are able to verify the physical mechanism generating large pitches
described above. Consider B. subtilis swimming with two flagellar bundles, both with
the same helical geometry used in our model of one flagellar bundle. The first bundle is
attached with angles α1 = 45◦ and γ1 = 0◦, with the orientation angle β1 = β allowed
to vary. The second bundle is attached on the opposite side, with angles α2 = −45◦ and
γ2 = 0◦, and β2 = −β1 = −β (Fig. 10a).

Based on the mechanism proposed above, we expect that if β is positive, then the line
of action of the flagellar thrust due to the first bundle creates a torque that tends to
cancel the torque due to the rotation of the second bundle, and vice versa (Fig. 10a). As
the angle β increases from zero, more torque is cancelled and hence larger pitches are
expected. On the other hand, for negative values of β, the torque due to thrust enhances
the torque due to rotation of the other bundle, and so the pitch should remain small.

We use our BEM to calculate the wiggling trajectories of the configurations with two
flagellar bundles shown in Fig. 10a. In these calculations, each bundle is discretized using
12-gon cross-sections, but the cross-sections are slightly more separated than in the single
bundle, so that the total number of Stokeslets used in each bundle is 3304. The cell body
is still discretized with 1712 Stokeslets. In Fig. 10b, we plot the pitch of the wiggling
trajectory as a function of β. In accordance with our expectation, the pitch remains
small when β is negative and increases for positive values of β. This corroborates our
explanation of the wiggling kinematics produced by two flagellar bundles.

Multiple-bundle configurations can lead to the trajectories with pitch larger than 4 µm
that we observed for B. subtilis, but which could not be generated by a single bundle in
our BEM calculations. Because the configurations shown in Fig. 10a are symmetric upon
rotation around the major axis of the cell body by 180◦, for these configurations Ω and
V must both be parallel to the major axis, and thus the wiggling trajectory radius is
zero. However, by introducing small asymmetries into this flagellar configuration, V and
Ω become slightly misaligned and wiggling trajectory radii similar to those observed in
our imaging experiments can be generated while maintaining longer pitches. Consider the
three wiggling trajectories labeled in Fig. 1c. Using our BEM, we find bacterial geometries
involving two flagellar bundles that result in trajectories which closely approximate these
three trajectories, and present them in Table 1. Given the number of degrees of freedom,
we do not expect there to be a unique configuration generating any particular wiggling
trajectory. However, these results show that our physical understanding of the kinematics
of swimming with two bundles allows us to find configurations producing three realistic
wiggling trajectories, suggesting that many B. subtilis may swim using more than one
bundle at a time.
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6. Discussion

A bacterial trajectory is made of smoothly varying runs and rather abrupt tumbles. It
has been long known that, even during runs, the trajectory is not straight because of ro-
tational Brownian diffusion. We have shown that, in addition to this effect, the trajectory
is not straight due to flagella pushing the body off-axis, which results in helical wiggling
trajectories. We expect that wiggling trajectories are the norm among bacteria, because
perfect on-axis pushing by the flagellum is unlikely. Since peritrichous bacteria may form
flagellar bundles at many possible positions, and with many orientations relative to the
cell body, their trajectories will have a wide distribution of wiggling amplitudes.

We imaged the trajectories of B. subtilis bacteria and found that the average pitch and
radius of the wiggling trajectories are 8.9 ± 6.0 µm and 0.91 ± 0.81 µm, respectively,
with a wide distribution of pitches and radii. We used a BEM based on the method of reg-
ularized Stokeslets (Cortez (2001)) to calculate the wiggling swimming trajectories of B.

subtilis for the entire range of possible time-independent flagellar bundle configurations.
For a single rigid flagellum, our model produced no wiggling pitch greater than 4 µm.
Using physical estimates based on torque-balance considerations, we showed that pitch is
limited for bacteria swimming with a single bundle by the relatively large torque exerted
by the bundle. We then showed that model geometries of B. subtilis swimming with two
flagellar bundles can generate the wiggling trajectories observed in our experiments with
pitch greater than 4 µm.

B. subtilis swimming with multiple flagellar bundles have recently been observed using
flagellar staining and videomicroscopy (Li (2010)). The bundles can be aligned off-axis,
tangentially to the cell surface. Little is known about the dynamics of swimming with
multiple bundles. Our approach of combining experimental tracking of wiggling tra-
jectories with quantitative modeling provides an additional, complementary method of
interrogating this type of propulsion.

Based on the combined errors associated with modeling the ellipsoid (Section 3.3.1),
our BEM (Section 3.3.2), and our choice of mesh size (Section 3.4), we estimate that our
results for pitch and radius have an error of approximately 10%. When making detailed
comparisons with observations, three additional factors must be considered:

First, we have assumed an ellipsoidal cell body 4 µm long by 1 µm wide, which matches
the average size of B. subtilis observed in our experiments. In reality, however, there is
variation in cell body sizes and aspect ratios within a population, including asymmetric
body shapes.

Second, the shape of B. subtilis cell bodies is not perfectly ellipsoidal, but somewhat
“pill-shaped”. We have used our BEM to model cell-body shapes consisting of a cylin-
drical mid-section with hemispherical caps at their ends, and found that for cell bodies
with aspect ratio 4, the wiggling trajectory pitch and radius are 20% and 30% larger,
respectively, than those obtained for ellipsoidal cell bodies.

Third, we assumed that the bundle filament radius is 45 nm. We performed BEM
calculations to investigate the dependence of our results on the bundle filament radius.
Changing the bundle filament radius for the flagellar configuration specified by α = 30◦,
β = 51◦, γ = 24◦ did not affect the swimming speed V much (V = 15.64 µm/s for
filament radius 25 nm; V = 15.62 µm/s for filament radius 60 nm), but the rotation
rate Ω varied approximately linearly with filament radius, increasing by 51% as the
bundle filament radius increases from 25 nm (Ω = 34.6 rad/s) to 60 nm (Ω = 52.3
rad/s). The wiggling trajectory pitch and radius also varied approximately linearly with
filament radius, decreasing by 35% as the bundle filament radius increases from 25 nm
(P = 2.77 µm, R = 2.77 µm) to 60 nm (P = 1.79 µm, R = 1.86 µm).



The wiggling trajectories of bacteria 17

Combining all these errors, we estimate that in the worst case, the maximum pitch
generated by a single flagellar bundle might be approximately 10 µm. Importantly, the
conclusion drawn from our model that many of the large pitches observed in wiggling
trajectories of B. subtilis are produced by swimming with multiple bundles rather than
a single bundle is robust to errors of these magnitudes, since 32% of our observed tra-
jectories still have pitch greater than 10 µm.

Future investigations of wiggling trajectories may incorporate additional effects not
present in our minimal model for wiggling. As mentioned in Section 3.2, due to the
flexibility of the hook the orientation of flagella relative to the cell body can vary in
time. This intriguing elastohydrodynamic problem could potentially impact the wiggling
dynamics presented here, but will require a full treatment of fluid-structure interactions.
We note that for peritrichous bacteria, many flagella in a flagellar bundle are oriented
in the same direction; hence, altering the bundle orientation requires deforming many
hooks, not just one. Thus elastic deformation of flagellar bundles may be less important
for peritrichous bacteria such as B. subtilis than elastic deformation of a single flagellum
for monotrichous bacteria. Additionally, the detailed geometry of the cell body, especially
if it is curved and asymmetric, can lead to helical trajectories even for polar flagella or
flagellar bundles. Finally, the bundle is a composite object consisting of many flagella,
and future modeling may take into account the dynamics and detailed geometry of the
flagellar bundle, which may deviate significantly from a rigid helix, especially at its base.

To date, not much attention has been paid to off-axis flagella and flagellar bundles
in models of swimming bacteria. Understanding the microhydrodynamics of motile mi-
croorganisms provides fundamental information to predict the ecological implications
of these organisms (Durham et al. (2009)). Here we have shown that a minimal model
incorporating small deviations from the simplest and most widely used morphological
configuration – a flagellar bundle pushing on-axis – leads to the existence of wiggling
in bacterial trajectories, observed for B. subtilis and for a wide range of other bacterial
species.

The detailed kinematics produced by the non-symmetric geometries of off-axis flagel-
lar configurations are important for bacterial behaviors beyond the wiggling trajectories
studied here. One example is the recently discovered hybrid movement pattern of certain
marine bacteria (Xie et al. (2011); Stocker (2011)), which alternate reversals with flicks of
their flagellum, the flick resulting in a marked reorientation (mean of 90 degrees). During
a flick the flagellum develops a kink at the base and so is not aligned with the symmetry
axis of the cell body. Therefore we expect that refining commonly used models of bacterial
propulsion to incorporate off-axis flagella may shed light on a range of bacterial processes.
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